آخرین فایل ها
- بیشتر -دانلود تحقیق درمورد مقایسه چگالی حالتها در نیمرساناهای سه، دو، یک و صفر بعدی
با دانلود تحقیق در مورد مقایسه چگالی حالتها در نیمرساناهای سه، دو، یک و صفر بعدی در خدمت شما عزیزان هستیم.این تحقیق مقایسه چگالی حالتها در نیمرساناهای سه، دو، یک و صفر بعدی را با فرمت word و قابل ویرایش و با قیمت بسیار مناسب برای شما قرار دادیم.جهت دانلود تحقیق مقایسه چگالی حالتها در نیمرساناهای سه، دو، یک و صفر بعدی ادامه مطالب را بخوانید.
نام فایل:تحقیق در مورد مقایسه چگالی حالتها در نیمرساناهای سه، دو، یک و صفر بعدی
فرمت فایل:word و قابل ویرایش
تعداد صفحات فایل:31 صفحه
قسمتی از فایل:
مقدمه:
محققان زیادی در سراسر جهان، به مطالعهی نظری و آزمایشگاهی خواص ريزساختارهاي اشتغال دارند. اگرچه حجم گزارشها از دستاوردهای آزمایشگاهی در مقایسه با تحقيقات بنيادي بسیار بیشتر است امّا با در اختیار گرفتن کامپیوترهای با قدرت پردازش بالا، مطالعات نظری در مورد نانوساختارها نیز در حال افزایش میباشد. با وجود اینکه در این پایاننامه، بیشتر بر کارهای آزمایشگاهی تمرکز شده، لیکن در ابتدای اين فصل، یکی از مطالعات ساده نظری در مورد نانوساختارها یعنی "مقایسه چگالی حالتها در نیمرساناهای سه، دو، یک و صفر بعدی" ارائه
می شود. سپس در ادامه، مبانی آنالیزهائی که در فصلهای آینده از آنها برای مطالعه خواص نانوذرّات بهره گرفته میشود به طورخلاصه معرفی خواهند شد.
2-1 مقایسه چگالی حالتهای نیمرساناهای سه، دو، یک و صفر بعدی
2-1-1 محاسبه چگالی حالتها در نیمرساناهای حجیم
هر الکترون با بردار موج و اسپین S میتواند حالتهای ممکن انرژی که با نشان داده میشوند را با احتمال بین صفر و یک اشغال کند. چون مطابق اصل طرد پائولی، هر حالت کوانتومی حدّاکثر توسط یک فرمیون اشغال میگردد. تابع توزیع احتمال متناظر با این، توزیع مشهور فرمی دیراک است:
چون تابع توزیع به اسپین بستگی ندارد، میتوان نوشت. پارامتر پتانسیل شیمیائی است که در دمای صفر درجه با انرژی فرمی برابر است. در این دما تابع فرمی به صورت زیر تبدیل میشود.
در صورتی که احتمال اشغال تمامی حالتهای ممکن با هم جمع شوند، به دلیل اینکه در هر حالت حدّاکثر یک الکترون میتواند وجود داشته باشد، تعداد کلّ ذرّات N در سیستم برابر است با:
(2-1)
مقدار پتانسیل شیمیائی به گونهای است که در هر دما و انرژی، معادلهی بالا صادق باشد. چگالی حالتها را میتوان با کاربرد معادلهی شرودینگر برای الکترونهای غیر اندرکنشی به دست آورد.
جواب این معادله برای الکترونهای آزاد در یک شبکه تناوبی به حجم به صورت زیر است:
با اعمال شرایط تناوبی "بورن ون کارمن[1] "[81]
مقادیر بردارهای موج و ویژه مقادیر انرژی به صورت زیر به دست میآید:
(2-2)<